rescale.Rd
Standard: Rescale values to a standard normal scale
Normal: Rescale values to a standard (0-1) scale
Log: Rescale values to a natural log scale
Point-scale: Rescale values to a new point scale
rescale_standard(x, na_omit = TRUE) rescale_normal(x, na_omit = TRUE) rescale_log(x, na_omit = TRUE) rescale_pointscale(x, lower, upper, lower0 = NULL, upper0 = NULL, na_omit = TRUE)
x | Input vector |
---|---|
na_omit | Logical indicating whether to drop missing (NA) values. Default is TRUE. |
lower | Min value of new scale. Only applicable for pointscales. |
upper | Max value of new scale. Only applicable for pointscales. |
lower0 | Min value of old scale. If NULL, defaults to min of input. Only applicable for pointscales. |
upper0 | Max value of old scale. If NULL, defaults to max of input Only applicable for pointscales. |
Rescaled vector
## randomly sample 10 values ranging from -10 to 100 x <- sample(-10:100, 10) ## rescale to 0-1 scale rescale_standard(x)#> [1] 0.89795918 0.93877551 0.61224490 0.44897959 1.00000000 0.87755102 #> [7] 0.18367347 0.79591837 0.07142857 0.00000000## rescale to normal distribution (z-scores) rescale_normal(x)#> [1] 0.8259388 0.9328565 0.0775153 -0.3501553 1.0932330 0.7724800 #> [7] -1.0451200 0.5586447 -1.3391436 -1.5262495## rescale to logged distribution (natural log) rescale_log(x)#> [1] 1.949390 1.968483 1.785330 1.653213 1.995635 1.939519 1.278754 1.897627 #> [9] 0.903090 0.000000## rescale to new point scale rescale_pointscale(x, 1, 7, lower0 = -10, upper0 = 100)#> [1] 6.018182 6.236364 4.490909 3.618182 6.563636 5.909091 2.200000 5.472727 #> [9] 1.600000 1.218182